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In this paper, we present a demonstration of our test-driven fault navigation ap-
proach. This interconnected guide for debugging reproducible failures analyzes failure-
reproducing test cases and supports developers in following infection chains back to
root causes. With the help of a motivating error from the Seaside Web framework, we
show how to reveal suspicious system parts, identify experienced developers for help,
and debug erroneous behavior and state in the execution history.

1 Introduction

The correction of ubiquitous software failures can cost a lot of money [19] because their
debugging is often a time-consuming development activity [3,7]. During debugging,
developers largely attempt to understand what causes failures: Starting with a test
case, which reproduces the observable failure, they have to follow failure causes on the
infection chain back to the root cause (defect) [22]. This idealized procedure requires
deep knowledge of the system and its behavior because failures and defects can be far
apart [8]. Unfortunately, common debugging tools are inappropriate to systematically
investigate such infection chains in detail [9]. Thus, developers have to primarily rely on
their intuition and the localization of failure causes takes up a lot of time [10]. To prevent
debugging by trial and error, experienced developers apply the scientific method and its
systematic hypothesis-testing [10,22]. However, even when using the scientific method
the search for failure causes can still be a laborious task. First, missing expertise about
the system makes it hard to understand incorrect behavior and to create reasonable
hypotheses [11]. Second, contemporary debugging approaches still provide little or
no support for the scientific method. For these reasons, we summarize our research
question as follows:

How can we effectively support developers in creating, evaluating, and re-
fining failure cause hypotheses so that we reduce debugging costs with
respect to time and effort?

In this paper, we present a demonstration of our test-driven fault navigation that
guides the debugging of reproducible failures [13, 14,20]. Based on the analysis of
passing and failing test cases, we reveal anomalies and integrate them into a breadth
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first search that leads developers to defects. This systematic search consists of four
specific navigation techniques that together support the creation, evaluation, and re-
finement of failure cause hypotheses for the scientific method. First, structure nav-
igation [14] localizes suspicious system parts and restricts the initial search space.
Second, team navigation [14] recommends experienced developers for helping with
failures even if defects are still unknown. Third, behavior navigation [14, 15] allows de-
velopers to follow emphasized infection chains of failing test cases backwards. Fourth,
state navigation [5, 6] identifies corrupted state and reveals parts of the infection chain
automatically. We implement test-driven fault navigation in our Path tools frame-
work [12,14, 15, 20] for the Squeak/Smalltalk development environment and limit its
computation costs with the help of our incremental dynamic analysis [5,12,15]. This
lightweight dynamic analysis ensures a feeling of immediacy when debugging with our
tools by splitting the run-time overhead over multiple test runs depending on develop-
ers’ needs. Hence, our test-driven fault navigation in combination with our incremental
dynamic analysis answers important questions in a short time: where to start debug-
ging, who understands failure causes best, what happened before failures, and which
program entities are in question.

The remainder of this paper is organized as follows: Section 2 explains the moti-
vating example for demonstrating our approach. Section 3 briefly introduces our test-
driven fault navigation. Section 4 demonstrates our approach and how it supports
debugging of the motivating example. Section 5 concludes and presents next steps.

2 Motivating Example: Typing Error in Seaside

We introduce a motivating example error taken from the Seaside Web framework [2,16]
that serves as a basis for demonstrating our test-driven fault navigation approach in the
following sections.

Seaside’ is an open source Web framework implemented in Smalltalk [4]. The
framework provides a uniform, pure object-oriented view of Web applications and com-
bines a component-based with a continuation-based approach [17]. With this, every
component has its own control flow which leads to high reusability, maintainability and
a high level of abstraction. Additionally, it is written in Smalltalk that allows developers
to debug and update applications on the fly. It provides a layer over HTTP and HTML
that let you build highly interactive Web applications that come very close to the imple-
mentation of real desktop applications. Finally, Seaside consists of about 650 classes,
5,500 methods and a large test suite with more than 700 test cases.

We have inserted a defect into Seaside’s Web server and its request/response pro-
cessing logic (WABufferedResponse class, writeHeadersOn: method). Figure 1
illustrates the typing error inside the header creation of buffered responses. Once a
client opens a Seaside Web application, its Web browser sends a request to the cor-
responding Web server. This request is then processed by the framework leading to
a corresponding response to the browser. Depending on the Web application, this re-
sponse is either a streamed or buffed response object. While the first transfers the
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Figure 1: An inconspicuous typo in writing buffered response headers leads to faulty
results of several client requests.

message body as a stream, the latter buffers and sends the response as a whole. Dur-
ing the creation of buffered responses, there is a typo in writing the header. The typo in
“Content-Lenght” is inconspicuous but leads to invalid results in browser requests that
demand buffered responses. Streamed responses are not influenced and still work
correctly. Although the typo is simple to characterize, observing it can be laborious.
First, some clients hide the failure since they are able to handle corrupted header infor-
mation. Second, as the response header is built by concatenating strings, the compiler
does not report an error. Third, by reading source code like a text, developers tend to
overlook such small typos [18].

3 Anomalous Guide to Localize Causes in Failing Test
Cases

Based on test cases that reproduce the observable failure [20], we introduce a novel
systematic top-down debugging process with corresponding tools called test-driven
fault navigation. It does not only support the scientific method with a breadth-first
search [21] but also integrates hidden test knowledge for guiding developers to failure
causes. Starting with a failure-reproducing test case as entry point, we reveal suspi-
cious system parts, identify experienced developers for help, and navigate developers
along the infection chain step by step. In doing so, anomalies highlight corrupted be-
havior and state and so assist developers in their systematically hypothesis-testing.
Figure 2 summarizes our complete test-driven fault navigation process and its primary
activities:

Reproducing failure: As a precondition for all following activities, developers have to
reproduce the observable failure in the form of at least one test case. Besides
the beneficial verification of resolved failures, we require tests above all as entry
points for analyzing erroneous behavior. For this activity, we have chosen unit
test frameworks because of their importance in current development projects.
Our approach is neither limited to unit testing nor does it require minimal test
cases as proposed by some guidelines [1].
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Figure 2: Our test-driven fault navigation debugging process guides developers with
interconnected advice to reproducible failure causes in structure, team, behavior, and
state of the system under observation.

Localizing suspicious system parts (Structure navigation) Having at least one
failing test, developers can compare its execution with other test cases and iden-
tify structural problem areas that help in creating initial hypotheses. By analyzing
failed and passed test behavior, possible failure causes are automatically local-
ized within a few suspicious methods so that the necessary search space is sig-
nificantly reduced. We have developed an extended test runner called PathMap
that supports spectrum-based fault localization within the system structure. It
provides a scalable tree map visualization and a low overhead analysis frame-
work that computes anomalies at methods and refines results at statements on

demand.

Recommending experienced developers (Team navigation) Some failures require
knowledge of experts to help developers in creating proper hypotheses. By com-
bining localized problem areas with source code management information, we
provide a novel developer ranking metric that identifies the most qualified experts
for fixing a failure even if the defect is still unknown. Developers having changed
the most suspicious methods are more likely to be experts than authors of non-
infected system parts. We have integrated our metric within PathMap providing
navigation to suitable team members.

Debugging erroneous test cases backwards (Behavior navigation) For

refining
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their understanding of erroneous behavior, developers experiment with the
execution and state history of a failing test case. To follow the infection chain
back to the defect, they choose a proper entry point such as the failing test or
one of its suspicious methods and start PathFinder our lightweight back in time
debugger. If anomalies are available, we classify the executed trace and so allow
developers to create proper hypotheses that assist the behavioral navigation to
defects.

Identifying corrupted state in the infection chain (State navigation) Besides the
classification of executed behavior with spectrum-based anomalies, we also high-
light parts of the infection chain with the help of state anomalies. We derive state
properties from the hidden knowledge of passing test cases, create generalized
contracts, and compare them with failing tests. Such dynamic invariants reveal
state anomalies by directly violating contracts on the executed infection chain and
so assist developers in creating and refining hypotheses. For this state naviga-
tion, our PathMap automatically harvests objects and creates contracts while our
PathFinder integrates the violations into the execution history.

Besides our systematic top down process for debugging reproducible failures, the
combination of testing and anomalies also provides the foundation for interconnected
navigation with a high degree of automation. All four navigation activities and their
anomalous results are affiliated with each other and so allow developers to explore
failure causes from combined perspectives. An integration supports developers in an-
swering more difficult questions and allows other debugging tasks to benefit even from
anomalies. Linked views between suspicious source code entities, erroneous behav-
ior, and corrupted state help not only to localize causes more efficiently but also to
identify the most qualified developers for understanding the current failure. Our Path
tools support these points of view in a practical and scalable manner with the help of
our incremental dynamic analysis. With a few user interactions, we split the expen-
sive costs of dynamic analysis over multiple test runs and varying granularity levels so
that we can provide both short response times and suitable results. Thus, developers
are able to answer with less effort where to start debugging; who understands failure
causes best; what happened before failures; and which program entities are infected.

4 Example: Debugging Seaside’s Typo

With respect to our debugging process, we demonstrate each navigation step with
the help of Seaside’s typing error in more detail. Therefore, we start with the imple-
mentation of a failing test case that reproduce the observable failure. In the case of
our example, developers have to implement a simple server request waiting for a cor-
rupted response that cannot be parsed correctly. After that, they are able to apply our
approach and its specific navigations as follows:
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Figure 3: PathMap: In our Seaside example, our structure navigation restricts the
search space to a few very suspicious methods in buffered responses.

4.1 Structure Navigation: Localizing Suspicious Response Ob-
jects

In our motivating typing error, we localize several anomalies within Seaside’s response
methods. Figure 3 presents the tree map visualization of Seaside with test classes
on the left side and application classes on the right side (1). After running Sea-
side’s response test suite with the result of 53 passed and 9 failed tests, our struc-
ture navigation colorizes the suspiciousness scores of methods and reveals anoma-
lous areas of the system. For example, the interactively explorable yellow box (2)
illustrates that all nine failing tests are part of the buffered test suite. In contrast, the
green box below includes the passed streaming tests. The more important informa-
tion for localizing failure causes is visualized at the upper right corner (3). There
are three red and three orange methods providing confidence that the failure is in-
cluded in the WABuf feredResponse class. To that effect, the search space is re-
duced to six methods. However, a detailed investigation of the writeContentOn:
and content method shows that they shares the same characteristics as our failure
cause in writeHeadersOn:. At this point, it is not clear from a static point of view
how these suspicious methods are related to each other. Developers need further help
in order to understand how the failure comes to be.
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Figure 4: PathMap: Our developer ranking points out (anonymized) experts. Based on
authors of spectrum-based anomalies, we create a ranked list of possible experts that
understand failure causes best.

4.2 Team Navigation: Finding Experienced Seaside Developers
for Help

With respect to our typing error, we reduce the number of potential contact persons to
4 out of 24 Seaside developers, whereby the author of the failure-inducing method is
marked as particularly important. The table in Figure 4 summarizes the (interim) results
of our developer ranking metric and suggests Developer A? for fixing the defect by a
wide margin. Compared to a coverage-based metric, which simply sums up covered
methods of failing tests per developer, our results are more precise with respect to
debugging. A’s lead is shrinking (only 55 %), C (24 %) changes the place with B (19 %),
and the list is extended with a fifth developer (1 %). It should be noted that our team
navigation does not blame developers. We expect that the individual skills of experts
help in comprehending and fixing failure causes more easily and thus might reduce the
overall costs of debugging.

4.3 Behavior Navigation: Understanding How the Failure Comes
to Be

In our Seaside example, we highlight the erroneous execution history of creat-
ing buffered responses and support developers in understanding how suspicious
methods belong together. Following Figure 5, developers focus on the failing
testIsCommitted behavior and follow the shortest infection chain from the observ-
able failure back to its root cause. They begin with the search for executed methods
with a failure cause probability larger than 90 %. The trace includes and highlights four
methods matching this query. Since the writeContentOn: method (1) has been ex-
ecuted shortly before the failure occurred, it should be favored for exploring corrupted

2Developers’ names have been anonymized.
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Figure 5: PathFinder: The classified execution history of our Seaside typing error.

state and behavior first®. A detailed inspection of the receiver object reveals that the
typo already exists before executing this method. Following the infection chain back-
wards, more than three methods can be neglected before the next suspicious method
is found (2). Considering writeHeadersOn: in the same way manifests the failure
cause. If necessary, developers are able to refine fault localization at the statement-
level analogous to our structure navigation and see that only the first line of the test
case is always executed, thus triggering the fault (3).

4.4 State Navigation: Come Closer to the Typing Error

In our Seaside typing error, our state navigation is able to reveal two anomalies close by
the root cause. First, we run all passing tests from the still working streamed responses
and collect type and value ranges of their applied objects. Among others we check all
string objects if they are spelled correctly or not. Second, we derive common invariants
from the concrete objects and create corresponding contracts. Thus, we propagate the
implicit assertions of the response tests to each covered method and automatically
generate assertions for pre-/post-conditions and invariants of the corresponding class.
Each assertion summarizes common object properties such as types, value ranges of
numbers, and permissions of undefined objects. Third, we execute the same failing
test case as in our behavior navigation but now with enabled contracts. As soon as a

3The simple accessor method contents can be neglected at this point.
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Figure 6: PathFinder: State anomalies highlight the typing error and reveal the infection
chain in the near of the defect.

contract is violated, we mark the corresponding exception in the execution history and
so reveal for our test IsCommitted two state anomalies that are close by the defect.

Figure 6 summarizes the result of our state navigation. We mark method calls trig-
gering a violation with small purple exclamation marks (1). Developers can further
inspect these violations and see that a precondition fails. There is a spelling violation
in the first argument of this method—all streamed responses used correctly spelled
identifier keys for their header information. The corrupted state is opened for further ex-
ploration on the right (2). As our typo in “content-lenght” is automatically revealed, our
state navigation gives developers helpful advice about the real failure cause. Another
spelling violation is close by and developers can easily follow the infection chain back
(3). Finally, the next very suspicious spectrum-based anomaly at writeHeadersOn:
highlights the last step to the root cause. Following both state and spectrum-based
anomalies directly guides developers to the defect of our Seaside typing error and also
allows them to understand what causes the failure.

5 Summary and Next Steps

In this paper, we presented a demonstration of our test-driven fault navigation by de-
bugging a small example. Starting with the structure navigation, we restrict the initial
search space and lower speculations about failure causes. Based on this information,
we are able to recommend experienced developers that can further help with debug-
ging this failure. After that, developers apply our behavior and state navigation and
follow the highlighted infection chain back to its root cause.

Future work deals with finishing the dissertation. So far, there is a first complete
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draft including 180 pages in total with 135 pages of content. We plan to submit the
thesis at the end of this year.
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